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Precision Agriculture

» GPS technology used in site-specific, sensor-based crop
management

» combination of agriculture and information technology
» data-driven approach to agriculture

> lots of data analysis tasks



Data Details — Example Field

Figure: F550 field, depicted on satellite imagery, source: Google Eart
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Data Details — Features

» collect a number of geo-coded, high-resolution features such
as:
» N1, N2, N3: nitrogen fertilizer application rates in 2004
» REIP32, REIP49: vegetation index (red edge inflection point)
in 2004
> Yield: corn yield 2003, winter wheat yield in 2004 and 2007
» EC25: electrical conductivity of soil in 2004
» pH, P, K, Mg: soil sampling in 2007

» one field available, 1080 records in 25 x 25m-resolution on a
hexagonal grid



Data Details — Temporal Aspects
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Figure: timeline of data acquisition



Spatial Autocorrelation

Are (spatial) data records independent of each other?
(Do we have spatial autocorrelation?)
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(a) EC25

(b) Magnesium content

Figure: F550, EC25 and Magnesium readings
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Management Zone Delineation

» A common task in agriculture:

>

>
>
>

subdivide the field into smaller zones
zones are rather homogeneous
zones are spatially mostly contiguous
similarity between zones is low

» — spatial clustering



Literature Approaches

» mostly non-spatial algorithms are used
> no spatial contiguity

small islands, outliers, etc.

black-box models

fuzzy c-Means, k-Means, etc.
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» spatial contiguity is not always required, but desirable

> spatial autocorrelation is usually neglected rather than
exploited



Spatial Contiguity Constraint

» spatial clustering = clustering with a spatial contiguity
constraint

» — constrained clustering

» Keep it simple and understandable:

> hierarchical clustering
> agglomerative clustering

> ldea:
1. (optionally) split field into small zones which are homogeneous

2. iteratively merge clusters obeying similarity and spatial
constraint



Optional Spatial Tessellation

» k-Means clustering on the data points’ coordinates
» due to spatial autocorrelation, adjacent points are likely to be
similar
> this ensures homogeneity of these small zones
> k is user-controllable and easy to understand
» homogeneous field: smaller k
> heterogeneous field: higher k



Optional Spatial Tessellation

F550, 80 zones, EC25
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Figure: Tessellation of F550 using k-means, k = 80 (grey shades are for
illustration only, no further meaning here)



Hierarchical Agglomerative Constrained Clustering

» principle: merge only adjacent objects/clusters, if they are
similar enough
> this ensures spatial contiguity
» — spatial constraint, non-adjacent clusters cannot link

» once non-adjacent clusters become much more similar than
adjacent ones, they may be merged

» introduce a user-controllable contiguity factor cf
cf > 2: high contiguity

cf € [1,2]: low contiguity

cf < 1: no contiguity
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Plots for different predictor variables
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F631, EC25 clustering (low/high spat. contig.)
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(d) F631, EC25, 30 clusters

(c) F631, EC25, 30 clusters
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F610, EC25, tolerance against missing data
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(b) F610, EC25, 10 zones

(a) F610, EC25, 100 initial clusters
Figure: HACC-SPATIAL on F610 using EC25



F440, different contiguity settings (low to high)

s .
=t =
LTl Y o
» e
W - et e
@i m SRS,
g L L
: “&wwﬁi e QMWI
gy e
prrt 7 n"f Ww *



Summary

» precision agriculture as a data-driven approach

> spatial, geo-referenced data records in large amounts

» management zone delineation solved as a spatial clustering
approach

» important difference between spatial and non-spatial data
treatment = use models which are fit for spatial tasks



Time for . ..

Questions?

Next Workshop Data Mining in Agriculture in 2012:
http://dma-workshop.de

> contact: russ@dma-workshop.de

» slides, R scripts and further info at
http://research.georgruss.de



Survey on “Data Mining in Agriculture”

» Third paper in this workshop

» by Antonio Mucherino, author of the “"Data Mining in
Agriculture” book (Springer, 2009)

SPRINGER OPTIMIZATION 34
AND ITS APPLICATIONS

Antonio Mucheri

Petraq J. rgji

Panos M. Pardalos
Data Mining in

Agriculture

@ Springer




Survey

» mainly about Antonio’s . ..
> biclustering on wine fermentation data

» ...and my work:

> vyield prediction



Wine fermentation

» measure metabolites:

> glucose
fructose
organic acids
glycerol
ethanol ...

» Try to predict problematic fermentations from the above
variables
» cluster known fermentations (normal, slow, stuck), assign score
» for new fermentations: find best cluster and predict outcome
» obtain a score for the probability of a fermentation to become
problematic
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Yield prediction

» collect spatial, high-resolution data
> vegetation indices
fertilizer data
previous yields
sensor data
digital elevation model
> (try to) predict yield
> regression task
» use different regression models
> develop spatial regression
> as a basis for: assessing a variable's importance for yield
prediction
— spatial variable importance
(ongoing part of my PhD thesis)
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Other topics
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automatic recognition and grading of fruit (data mining and
image processing)

detection and analysis of animal sounds (data mining and
audio signal processing)

classification of flower species
estimation of soil properties and soil types

disease outbreaks, water consumption



