Spatial Data Mining in Precision Agriculture NTNU, Trondheim

Georg Ruß, PhD candidate

August 13th, 2010

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Precision Agriculture

- GPS technology used in site-specific, sensor-based crop management
- combination of agriculture and information technology

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- data-driven approach to agriculture
- lots of data analysis tasks

Data Details - Example Field

Figure: F440 field, depicted on satellite imagery, source: Google Earth

Data Details – Example Sensor

Figure: Yara N-Sensor for vegetation index data collection, source: Agricon GmbH

Data Details - Features

- collect a number of geo-referenced, high-resolution features such as:
 - ▶ N1, N2, N3: nitrogen fertilizer application rates
 - REIP32, REIP49: vegetation index (red edge inflection point)
 - Yield: winter wheat yield in this year
 - EC25: electrical conductivity of soil, represents information about soil humidity, mineral content, pH value (et al)
 - pH, P, Mg, K: soil sampling data
- \blacktriangleright a few fields available, data records in up to $10 \times 10 m$ -resolution

Data Details – Temporal Aspects

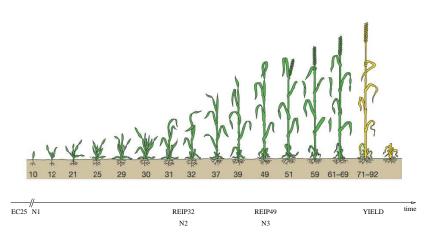


Figure: growing stages of cereals, source: adapted from BBCH

Data Details - Questions

Can the current year's yield be predicted from the available features? Which are the important variables for this task?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- $\blacktriangleright \rightarrow$ Spatial Regression
- How should the field be delineated into zones for basic fertilization?
 - $\blacktriangleright \rightarrow$ Spatial Clustering

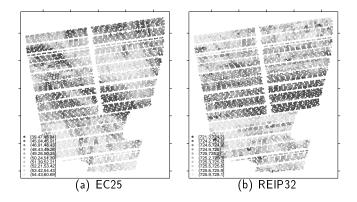
(Spatial) Regression – Basics

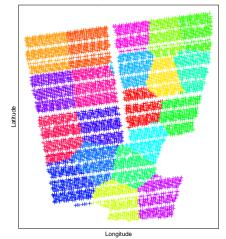
multivariate regression: usually a cross-validation setup

- divide data into training and test sets
- train regression model on training set
- report error on independent (!) test set
- linear model (usually as a baseline and with linear dependencies in data)
- support vector regression (support vector machine)
- random forest, bagging, regression tree (tree-based models)

(Spatial) Regression – Issue

Are (spatial) data records independent of each other? (Do we have spatial autocorrelation?)




Figure: F440, EC25/REIP32 predictor

Spatial Regression – Idea

for spatial data: develop spatial cross-validation approach:

- don't sample test and training sets randomly
- instead: sample using spatial relationships between records
- idea: subdivide the field into contiguous zones
 - use k-means on the data records' coordinates
 - select training and test sets from this set of zones
 - continue with the (now spatial) standard cross-validation approach

Spatial Regression – Figure

F440, 20 clusters

Figure: Tessellation of F440 using k-means, k = 20

◆□ ◆ ▲ ◆ ▲ ◆ ▲ ◆ ◆ ● ◆ ◆ ● ◆ ◆ ● ◆

Spatial Variable Importance - Principle

- new data are collected: decide whether they're useful for yield prediction
- traditionally: feature selection (wrapper/filter approach)
- but: interdependencies among the variables
- novel variable importance approach:
 - choose one variable and permute its values in the test set
 - measure the increase in prediction error on the test set
 - low/high increase: low/high importance (depending on data and model)

- REIP49 most important for yield prediction
 - obvious, since it shows the biomass amount close to harvest
- ► F440: REIP32 close second
- ► F611: likely linear relationships in data (*Im* best)
- issues with different numbers of levels for variables occur (4 levels for N1, 45/50 for N2/N3, 367/397 for REIP32/49)
- difference in modeling (linear vs. tree-based vs. support vector regression) can be seen

Management Zone Delineation

- A common task in agriculture:
 - subdivide the field into smaller zones
 - zones are rather homogeneous
 - zones are spatially mostly contiguous

ション ふゆ くち くち くち くち

similarity between zones is low

 \blacktriangleright \rightarrow spatial clustering

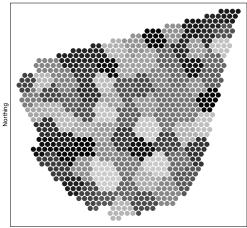
Literature Approaches

mostly non-spatial algorithms are used

- no spatial contiguity
- small islands, outliers, etc.
- black-box models
- ▶ fuzzy c-Means, k-Means, etc.
- spatial contiguity is not always required, but desirable
- spatial autocorrelation is usually neglected rather than exploited

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Spatial Contiguity Constraint


- spatial clustering = clustering with a spatial contiguity constraint
- \blacktriangleright \rightarrow constrained clustering
- Keep it simple and understandable:
 - hierarchical clustering
 - agglomerative clustering
- Idea:
 - 1. split field into small zones which are homogeneous
 - 2. iteratively merge these zones obeying similarity and spatial constraint

Spatial Tessellation

- k-Means clustering on the data points' coordinates
 - due to spatial autocorrelation, adjacent points are likely to be similar

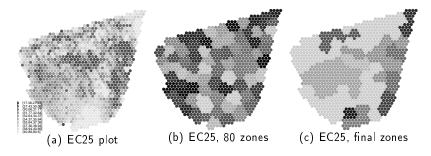
- this ensures homogeneity of these small zones
- k is user-controllable and easy to understand
 - homogeneous field: smaller k
 - heterogeneous field: higher k

Spatial Tessellation

F550, 80 zones, EC25

Easting

Figure: Tessellation of F550 using k-means, k = 80 (grey shades are for illustration only, no further meaning here)


Hierarchical Agglomerative Constrained Clustering

principle: merge only adjacent zones, if they are similar enough

- this ensures spatial contiguity
- once non-adjacent zones become much more similar than adjacent ones, they may be merged

- introduce a user-controllable contiguity factor cf
- $cf \ge 2$: high contiguity
- $cf \in [1,2]$: low contiguity
- $cf \leq 1$: no contiguity

HACC – 1D example

Figure: F550, EC25 clustering

HACC – 4D example

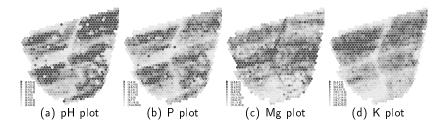


Figure: F550, four attributes

(日) (四) (日)

HACC – 4D example (cont.)

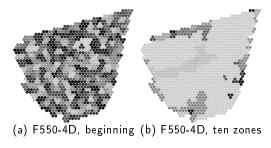


Figure: F550, management zones

actually, 3 zones (when comparing attribute values)

- Iow pH, Iow P, Iow Mg, Iow K (largest zone)
- high pH, high P, high Mg, high K (border zones)
- high pH, high P, low Mg, high K (middle, from left)

Summary

- precision agriculture as a data-driven approach
- spatial, geo-referenced data records in large amounts
- yield prediction solved as spatial regression approach
- management zone delineation solved as a spatial clustering approach
- ► important difference between spatial and non-spatial data treatment ⇒ use models which are fit for spatial tasks

Time for ...

Questions?

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

- contact: georg.russ@ieee.org
- slides, R scripts and further info at http://research.georgruss.de

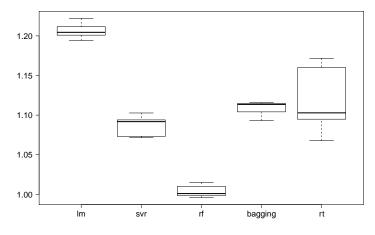


Figure: F440, RMSE of models

æ

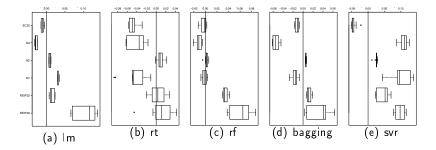


Figure: F440, RMSE increase of models after permuting one variable

э

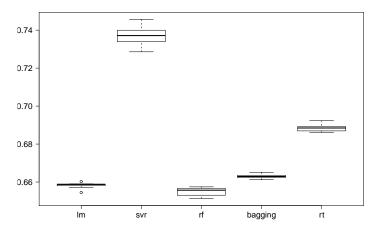


Figure: F611, RMSE of models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

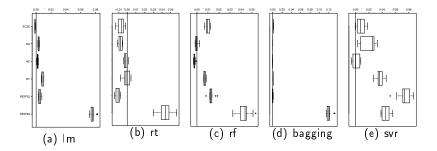


Figure: F611, RMSE increase of models after permuting one variable

э