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Preision Agriulture
◮ GPS tehnology used in site-spei�, sensor-based ropmanagement
◮ ombination of agriulture and information tehnology
◮ data-driven approah to agriulture
◮ lots of data analysis tasks



Data Details � Example Field

Figure: F440 �eld, depited on satellite imagery, soure: Google Earth



Data Details � Example Sensor

Figure: Yara N-Sensor for vegetation index data olletion, soure:Agrion GmbH



Data Details � Features
◮ ollet a number of geo-referened, high-resolution featuressuh as:

◮ N1, N2, N3: nitrogen fertilizer appliation rates
◮ REIP32, REIP49: vegetation index (red edge in�etion point)
◮ Yield: winter wheat yield in this year
◮ EC25: eletrial ondutivity of soil, represents informationabout soil humidity, mineral ontent, pH value (et al)
◮ pH, P, Mg, K: soil sampling data

◮ a few �elds available, data reords in up to 10× 10m-resolution



Data Details � Temporal Aspets

REIP49 YIELDREIP32

N2 N3

timeN1EC25 Figure: growing stages of ereals, soure: adapted from BBCH



Data Details � Questions
◮ Can the urrent year's yield be predited from the availablefeatures? Whih are the important variables for this task?

◮ → Spatial Regression
◮ How should the �eld be delineated into zones for basifertilization?

◮ → Spatial Clustering



(Spatial) Regression � Basis
◮ multivariate regression: usually a ross-validation setup

◮ divide data into training and test sets
◮ train regression model on training set
◮ report error on independent (!) test set

◮ linear model (usually as a baseline and with lineardependenies in data)
◮ support vetor regression (support vetor mahine)
◮ random forest, bagging, regression tree (tree-based models)



(Spatial) Regression � IssueAre (spatial) data reords independent of eah other?(Do we have spatial autoorrelation?)
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Spatial Regression � Idea
◮ for spatial data: develop spatial ross-validation approah:

◮ don't sample test and training sets randomly
◮ instead: sample using spatial relationships between reords

◮ idea: subdivide the �eld into ontiguous zones
◮ use k-means on the data reords' oordinates
◮ selet training and test sets from this set of zones
◮ ontinue with the (now spatial) standard ross-validationapproah



Spatial Regression � Figure
F440, 20 clusters

Longitude

La
tit

ud
e

[0.49,0.9569]Figure: Tessellation of F440 using k-means, k = 20



Spatial Variable Importane � Priniple
◮ new data are olleted: deide whether they're useful for yieldpredition
◮ traditionally: feature seletion (wrapper/�lter approah)
◮ but: interdependenies among the variables
◮ novel variable importane approah:

◮ hoose one variable and permute its values in the test set
◮ measure the inrease in predition error on the test set
◮ low/high inrease: low/high importane (depending on dataand model)



Spatial Variable Importane � Results
◮ REIP49 most important for yield predition

◮ obvious, sine it shows the biomass amount lose to harvest
◮ F440: REIP32 lose seond
◮ F611: likely linear relationships in data (lm best)
◮ issues with di�erent numbers of levels for variables our (4levels for N1, 45/50 for N2/N3, 367/397 for REIP32/49)
◮ di�erene in modeling (linear vs. tree-based vs. support vetorregression) an be seen



Management Zone Delineation
◮ A ommon task in agriulture:

◮ subdivide the �eld into smaller zones
◮ zones are rather homogeneous
◮ zones are spatially mostly ontiguous
◮ similarity between zones is low

◮ → spatial lustering



Literature Approahes
◮ mostly non-spatial algorithms are used

◮ no spatial ontiguity
◮ small islands, outliers, et.
◮ blak-box models
◮ fuzzy -Means, k-Means, et.

◮ spatial ontiguity is not always required, but desirable
◮ spatial autoorrelation is usually negleted rather thanexploited



Spatial Contiguity Constraint
◮ spatial lustering = lustering with a spatial ontiguityonstraint
◮ → onstrained lustering
◮ Keep it simple and understandable:

◮ hierarhial lustering
◮ agglomerative lustering

◮ Idea:1. split �eld into small zones whih are homogeneous2. iteratively merge these zones obeying similarity and spatialonstraint



Spatial Tessellation
◮ k-Means lustering on the data points' oordinates

◮ due to spatial autoorrelation, adjaent points are likely to besimilar
◮ this ensures homogeneity of these small zones
◮ k is user-ontrollable and easy to understand

◮ homogeneous �eld: smaller k
◮ heterogeneous �eld: higher k



Spatial Tessellation
F550, 80 zones, EC25
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[17.36,23.59]Figure: Tessellation of F550 using k-means, k = 80 (grey shades are forillustration only, no further meaning here)



Hierarhial Agglomerative Constrained Clustering
◮ priniple: merge only adjaent zones, if they are similar enough

◮ this ensures spatial ontiguity
◮ → spatial onstraint, non-adjaent zones annot link

◮ one non-adjaent zones beome muh more similar thanadjaent ones, they may be merged
◮ introdue a user-ontrollable ontiguity fator f
◮ f ≥ 2: high ontiguity
◮ f ∈ [1, 2]: low ontiguity
◮ f ≤ 1: no ontiguity



HACC � 1D example
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HACC � 4D example
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HACC � 4D example (ont.)
(a) F550-4D, beginning (b) F550-4D, ten zonesFigure: F550, management zones

◮ atually, 3 zones (when omparing attribute values)
◮ low pH, low P, low Mg, low K (largest zone)
◮ high pH, high P, high Mg, high K (border zones)
◮ high pH, high P, low Mg, high K (middle, from left)



Summary
◮ preision agriulture as a data-driven approah
◮ spatial, geo-referened data reords in large amounts
◮ yield predition solved as spatial regression approah
◮ management zone delineation solved as a spatial lusteringapproah
◮ important di�erene between spatial and non-spatial datatreatment ⇒ use models whih are �t for spatial tasks



Time for . . .
Questions?

◮ ontat: georg.russ�ieee.org
◮ slides, R sripts and further info athttp://researh.georgruss.de



Spatial Variable Importane � Results

lm svr rf bagging rt
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Spatial Variable Importane � Results
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Spatial Variable Importane � Results

lm svr rf bagging rt
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Spatial Variable Importane � Results
EC25

N3

N2

N1

REIP32

REIP49

0.00 0.02 0.04 0.06 0.08
10 repetitions, 10 clusters, 200 permutations

(a) lm
−0.01 0.00 0.01 0.02 0.03 0.04 0.05

10 repetitions, 10 clusters, 200 permutations

(b) rt
0.00 0.01 0.02 0.03 0.04 0.05

10 repetitions, 10 clusters, 200 permutations

() rf
0.00 0.02 0.04 0.06 0.08 0.10 0.12

10 repetitions, 10 clusters, 200 permutations

(d) bagging
0.00 0.02 0.04 0.06 0.08

10 repetitions, 10 clusters, 200 permutations

(e) svrFigure: F611, RMSE inrease of models after permuting one variable


