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Pre
ision Agri
ulture
◮ GPS te
hnology used in site-spe
i�
, sensor-based 
ropmanagement
◮ 
ombination of agri
ulture and information te
hnology
◮ data-driven approa
h to agri
ulture
◮ lots of data analysis tasks



Data Details � Example Field

Figure: F440 �eld, depi
ted on satellite imagery, sour
e: Google Earth



Data Details � Example Sensor

Figure: Yara N-Sensor for vegetation index data 
olle
tion, sour
e:Agri
on GmbH



Data Details � Features
◮ 
olle
t a number of geo-referen
ed, high-resolution featuressu
h as:

◮ N1, N2, N3: nitrogen fertilizer appli
ation rates
◮ REIP32, REIP49: vegetation index (red edge in�e
tion point)
◮ Yield: winter wheat yield in this year
◮ EC25: ele
tri
al 
ondu
tivity of soil, represents informationabout soil humidity, mineral 
ontent, pH value (et al)
◮ pH, P, Mg, K: soil sampling data

◮ a few �elds available, data re
ords in up to 10× 10m-resolution



Data Details � Temporal Aspe
ts

REIP49 YIELDREIP32

N2 N3

timeN1EC25 Figure: growing stages of 
ereals, sour
e: adapted from BBCH



Data Details � Questions
◮ Can the 
urrent year's yield be predi
ted from the availablefeatures? Whi
h are the important variables for this task?

◮ → Spatial Regression
◮ How should the �eld be delineated into zones for basi
fertilization?

◮ → Spatial Clustering



(Spatial) Regression � Basi
s
◮ multivariate regression: usually a 
ross-validation setup

◮ divide data into training and test sets
◮ train regression model on training set
◮ report error on independent (!) test set

◮ linear model (usually as a baseline and with lineardependen
ies in data)
◮ support ve
tor regression (support ve
tor ma
hine)
◮ random forest, bagging, regression tree (tree-based models)



(Spatial) Regression � IssueAre (spatial) data re
ords independent of ea
h other?(Do we have spatial auto
orrelation?)
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Spatial Regression � Idea
◮ for spatial data: develop spatial 
ross-validation approa
h:

◮ don't sample test and training sets randomly
◮ instead: sample using spatial relationships between re
ords

◮ idea: subdivide the �eld into 
ontiguous zones
◮ use k-means on the data re
ords' 
oordinates
◮ sele
t training and test sets from this set of zones
◮ 
ontinue with the (now spatial) standard 
ross-validationapproa
h



Spatial Regression � Figure
F440, 20 clusters
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[0.49,0.9569]Figure: Tessellation of F440 using k-means, k = 20



Spatial Variable Importan
e � Prin
iple
◮ new data are 
olle
ted: de
ide whether they're useful for yieldpredi
tion
◮ traditionally: feature sele
tion (wrapper/�lter approa
h)
◮ but: interdependen
ies among the variables
◮ novel variable importan
e approa
h:

◮ 
hoose one variable and permute its values in the test set
◮ measure the in
rease in predi
tion error on the test set
◮ low/high in
rease: low/high importan
e (depending on dataand model)



Spatial Variable Importan
e � Results
◮ REIP49 most important for yield predi
tion

◮ obvious, sin
e it shows the biomass amount 
lose to harvest
◮ F440: REIP32 
lose se
ond
◮ F611: likely linear relationships in data (lm best)
◮ issues with di�erent numbers of levels for variables o

ur (4levels for N1, 45/50 for N2/N3, 367/397 for REIP32/49)
◮ di�eren
e in modeling (linear vs. tree-based vs. support ve
torregression) 
an be seen



Management Zone Delineation
◮ A 
ommon task in agri
ulture:

◮ subdivide the �eld into smaller zones
◮ zones are rather homogeneous
◮ zones are spatially mostly 
ontiguous
◮ similarity between zones is low

◮ → spatial 
lustering



Literature Approa
hes
◮ mostly non-spatial algorithms are used

◮ no spatial 
ontiguity
◮ small islands, outliers, et
.
◮ bla
k-box models
◮ fuzzy 
-Means, k-Means, et
.

◮ spatial 
ontiguity is not always required, but desirable
◮ spatial auto
orrelation is usually negle
ted rather thanexploited



Spatial Contiguity Constraint
◮ spatial 
lustering = 
lustering with a spatial 
ontiguity
onstraint
◮ → 
onstrained 
lustering
◮ Keep it simple and understandable:

◮ hierar
hi
al 
lustering
◮ agglomerative 
lustering

◮ Idea:1. split �eld into small zones whi
h are homogeneous2. iteratively merge these zones obeying similarity and spatial
onstraint



Spatial Tessellation
◮ k-Means 
lustering on the data points' 
oordinates

◮ due to spatial auto
orrelation, adja
ent points are likely to besimilar
◮ this ensures homogeneity of these small zones
◮ k is user-
ontrollable and easy to understand

◮ homogeneous �eld: smaller k
◮ heterogeneous �eld: higher k



Spatial Tessellation
F550, 80 zones, EC25
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[17.36,23.59]Figure: Tessellation of F550 using k-means, k = 80 (grey shades are forillustration only, no further meaning here)



Hierar
hi
al Agglomerative Constrained Clustering
◮ prin
iple: merge only adja
ent zones, if they are similar enough

◮ this ensures spatial 
ontiguity
◮ → spatial 
onstraint, non-adja
ent zones 
annot link

◮ on
e non-adja
ent zones be
ome mu
h more similar thanadja
ent ones, they may be merged
◮ introdu
e a user-
ontrollable 
ontiguity fa
tor 
f
◮ 
f ≥ 2: high 
ontiguity
◮ 
f ∈ [1, 2]: low 
ontiguity
◮ 
f ≤ 1: no 
ontiguity



HACC � 1D example
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HACC � 4D example
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HACC � 4D example (
ont.)
(a) F550-4D, beginning (b) F550-4D, ten zonesFigure: F550, management zones

◮ a
tually, 3 zones (when 
omparing attribute values)
◮ low pH, low P, low Mg, low K (largest zone)
◮ high pH, high P, high Mg, high K (border zones)
◮ high pH, high P, low Mg, high K (middle, from left)



Summary
◮ pre
ision agri
ulture as a data-driven approa
h
◮ spatial, geo-referen
ed data re
ords in large amounts
◮ yield predi
tion solved as spatial regression approa
h
◮ management zone delineation solved as a spatial 
lusteringapproa
h
◮ important di�eren
e between spatial and non-spatial datatreatment ⇒ use models whi
h are �t for spatial tasks



Time for . . .
Questions?

◮ 
onta
t: georg.russ�ieee.org
◮ slides, R s
ripts and further info athttp://resear
h.georgruss.de



Spatial Variable Importan
e � Results
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Figure: F440, RMSE of models



Spatial Variable Importan
e � Results
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Spatial Variable Importan
e � Results

lm svr rf bagging rt
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Spatial Variable Importan
e � Results
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