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About me
◮ German omputer sientist
◮ with interest in (spatial) data mining
◮ urrently using mostly R for spatial data mining
◮ parts of this talk are going to be my PhD thesis
◮ last week:�Data Mining in Agriulture� workshophttp://dma2010.de/
◮ workshop as a means of bringing together interesting andinterested people, not neessarily from agriulture, but ratherfrom the omputational, data-driven point of view on preisionagriulture

http://dma2010.de/


Data Details � Field of Study

Figure: F550 �eld, depited on satellite imagery, soure: Google Earth



Data Details � Features
◮ ollet a number of geo-oded, high-resolution features suhas:

◮ N1, N2, N3: nitrogen fertilizer appliation rates in 2004
◮ REIP32, REIP49: vegetation index (red edge in�etion point)in 2004
◮ Yield: orn yield 2003, winter wheat yield in 2004 and 2007
◮ EC25: eletrial ondutivity of soil in 2004
◮ pH, P, K, Mg: soil sampling in 2007

◮ one �eld available, 1080 reords in 25× 25m-resolution on ahexagonal grid



Data Details � Temporal Aspets
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Figure: timeline of data aquisition



Spatial AutoorrelationAre (spatial) data reords independent of eah other?(Do we have spatial autoorrelation?)
[17.36,27.43]
(27.43,30.06]
(30.06,31.77]
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Management Zone Delineation
◮ A ommon task in agriulture:

◮ subdivide the �eld into smaller zones
◮ zones are rather homogeneous
◮ zones are spatially mostly ontiguous
◮ similarity between zones is low

◮ from a data mining perspetive: spatial lustering



Literature Approahes
◮ mostly non-spatial algorithms are used

◮ no spatial ontiguity
◮ small islands, outliers, et.
◮ blak-box models
◮ fuzzy -Means, k-Means, et.

◮ spatial ontiguity is not always required, but desirable
◮ spatial autoorrelation is usually negleted rather thanexploited(good summary in �Geostatistial Appliations for PA�, hapter 8,see exhibitions, my approah falls into the VIIIth ategory there,alled �modeling�)



Spatial Contiguity Constraint
◮ spatial lustering = lustering with a spatial ontiguityonstraint
◮ → onstrained lustering
◮ Keep it simple and understandable:

◮ hierarhial lustering
◮ agglomerative lustering

◮ Idea:1. split �eld into small zones whih are homogeneous2. iteratively merge these zones obeying similarity and spatialonstraint



Spatial Tessellation
◮ k-Means lustering on the data points' oordinates

◮ due to spatial autoorrelation, adjaent points are likely to besimilar
◮ this ensures homogeneity of these small zones
◮ k is user-ontrollable and easy to understand

◮ homogeneous �eld: smaller k
◮ heterogeneous �eld: higher k

◮ muh more �exible than grid-based approahes



Spatial Tessellation
F550, 80 zones, EC25
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[17.36,23.59]Figure: Tessellation of F550 using k-means, k = 80 (grey shades are forillustration only, no further meaning here)



Hierarhial Agglomerative Constrained Clustering
◮ priniple: merge only adjaent zones, if they are similar enough

◮ this ensures spatial ontiguity
◮ → spatial onstraint, non-adjaent zones annot link

◮ one non-adjaent zones beome muh more similar thanadjaent ones, they may be merged
◮ introdue a user-ontrollable ontiguity fator f
◮ f ≥ 2: high ontiguity
◮ f ∈ [1, 2]: low ontiguity
◮ f ≤ 1: no ontiguity



HACC � 1D example
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HACC � 4D example
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HACC � 4D example (ont.)
(a) F550-4D, beginning (b) F550-4D, ten zonesFigure: F550, management zones

◮ atually, 3 zones (when omparing attribute values)
◮ low pH, low P, low Mg, low K (largest zone)
◮ high pH, high P, high Mg, high K (border zones)
◮ high pH, high P, low Mg, high K (middle, from left)



Summary
◮ preision agriulture as a data-driven approah
◮ spatial, geo-referened data reords in large amounts
◮ management zone delineation solved as a spatial lusteringapproah
◮ from a omputer sientist's point of view: important di�erenebetween spatial and non-spatial data treatment ⇒ use modelswhih are �t for spatial tasks



Time for . . .
Questions?Next Workshop Data Mining in Agriulture likely in 2011 (NYC)

◮ ontat: georg.russ�ieee.org
◮ slides, R sripts and further info athttp://researh.georgruss.de


