Hierarchical Spatial Clustering for Management Zone Delineation ICPA 2010, Denver, Colorado

Georg Ruß

July 19th, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### About me

- German computer scientist
- with interest in (spatial) data mining
- currently using mostly R for spatial data mining
- parts of this talk are going to be my PhD thesis
- last week: "Data Mining in Agriculture" workshop http://dma2010.de/
- workshop as a means of bringing together interesting and interested people, not necessarily from agriculture, but rather from the computational, data-driven point of view on precision agriculture

## Data Details - Field of Study



Figure: F550 field, depicted on satellite imagery, source: Google Earth

#### Data Details – Features

- collect a number of geo-coded, high-resolution features such as:
  - ▶ N1, N2, N3: nitrogen fertilizer application rates in 2004
  - REIP32, REIP49: vegetation index (red edge inflection point) in 2004

(日) (中) (日) (日) (日) (日) (日)

- Yield: corn yield 2003, winter wheat yield in 2004 and 2007
- EC25: electrical conductivity of soil in 2004
- pH, P, K, Mg: soil sampling in 2007
- one field available, 1080 records in 25 × 25m-resolution on a hexagonal grid

#### Data Details – Temporal Aspects



Figure: timeline of data acquisition

・ロト ・四ト ・ヨト ・ヨト

5 9 Q C

#### Spatial Autocorrelation

#### Are (spatial) data records independent of each other? (Do we have spatial autocorrelation?)



Figure: F550, EC25 and Magnesium readings

## Management Zone Delineation

- A common task in agriculture:
  - subdivide the field into smaller zones
  - zones are rather homogeneous
  - zones are spatially mostly contiguous
  - similarity between zones is low
- from a data mining perspective: spatial clustering

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

## Literature Approaches

mostly non-spatial algorithms are used

- no spatial contiguity
- small islands, outliers, etc.
- black-box models
- fuzzy c-Means, k-Means, etc.
- spatial contiguity is not always required, but desirable
- spatial autocorrelation is usually neglected rather than exploited

(good summary in "Geostatistical Applications for PA", chapter 8, see exhibitions, my approach falls into the VIIIth category there, called "modeling")

# Spatial Contiguity Constraint

- spatial clustering = clustering with a spatial contiguity constraint
- $\blacktriangleright$   $\rightarrow$  constrained clustering
- Keep it simple and understandable:
  - hierarchical clustering
  - agglomerative clustering
- Idea:
  - 1. split field into small zones which are homogeneous
  - 2. iteratively merge these zones obeying similarity and spatial constraint

(日) (中) (日) (日) (日) (日) (日)

## Spatial Tessellation

- k-Means clustering on the data points' coordinates
  - due to spatial autocorrelation, adjacent points are likely to be similar

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

- this ensures homogeneity of these small zones
- k is user-controllable and easy to understand
  - homogeneous field: smaller k
  - heterogeneous field: higher k
- much more flexible than grid-based approaches

## Spatial Tessellation



F550, 80 zones, EC25

Easting

Figure: Tessellation of F550 using k-means, k = 80 (grey shades are for illustration only, no further meaning here)

Hierarchical Agglomerative Constrained Clustering

principle: merge only adjacent zones, if they are similar enough

- this ensures spatial contiguity
- once non-adjacent zones become much more similar than adjacent ones, they may be merged

(日) (中) (日) (日) (日) (日) (日)

- introduce a user-controllable contiguity factor cf
- $cf \ge 2$ : high contiguity
- $cf \in [1,2]$ : low contiguity
- $cf \leq 1$ : no contiguity

## HACC – 1D example



#### Figure: F550, EC25 clustering

### HACC – 4D example



Figure: F550, four attributes

(日) (四) (日)

# HACC – 4D example (cont.)



Figure: F550, management zones

actually, 3 zones (when comparing attribute values)

- Iow pH, Iow P, Iow Mg, Iow K (largest zone)
- high pH, high P, high Mg, high K (border zones)
- high pH, high P, low Mg, high K (middle, from left)

# Summary

- precision agriculture as a data-driven approach
- spatial, geo-referenced data records in large amounts
- management zone delineation solved as a spatial clustering approach
- ▶ from a computer scientist's point of view: important difference between spatial and non-spatial data treatment ⇒ use models which are fit for spatial tasks



#### Questions?

Next Workshop Data Mining in Agriculture likely in 2011 (NYC)

- contact: georg.russ@ieee.org
- slides, R scripts and further info at http://research.georgruss.de