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Precision Agriculture

» GPS technology used in site-specific, sensor-based crop
management

» combination of agriculture and information technology
» data-driven approach to agriculture

> lots of data analysis tasks



Data Details — Example Field

Figure: F440 field, depicted on satellite imagery, source: Google Earth
[m] = = = =



Data Details — Example Sensor

Figure: Yara N-Sensor for vegetation index data collection, source:
Agricon GmbH



Data Details — Features

» collect a number of geo-coded, high-resolution features such
as:
» N1, N2, N3: nitrogen fertilizer application rates
REIP32, REIP49: vegetation index (red edge inflection point)
» Yield: winter wheat yield in this year
» EC25: electrical conductivity of soil, represents information
about soil humidity, mineral content, pH value (et al)

» two fields available, 5000/6500 data records in
10 x 10m-resolution
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Data Details — Temporal Aspects
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Figure: growing stages of cereals, source: adapted from BBCH
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Data Details — Questions

» Can the current year's yield be predicted from the available
features?

» — Regression
» We are using spatial, geo-referenced data:
» — Spatial Regression



(Spatial) Regression — Basics

» multivariate regression: usually a cross-validation setup

» divide data into training and test sets
> train regression model on training set
» report error on independent (!) test set

> support vector regression (support vector machine)

» random forest, bagging, regression tree (tree-based models)



(Spatial) Regression — Spatial Autocorrelation

Are (spatial) data records independent of each other?
(Do we have spatial autocorrelation?)
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Figure: F440, EC25/REIP32 predictor
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(Spatial) Regression — Spatial Autocorrelation

Semivariogram of EC25 on F611 Semivariogram of REIP32 on F440
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Figure: F440, EC25/REIP32 semivariograms, variance as a function of
distance (omnidirectional)



Spatial Regression — Idea

» for spatial data: develop spatial cross-validation approach:
» don't sample test and training sets randomly
» instead: sample using spatial relationships between records
» idea: subdivide the field into contiguous zones

» use k-means on the data records’ coordinates

» select training and test sets from this set of zones

» continue with the (now spatial) standard cross-validation
approach



Spatial Regression — Tessellation Figure

F440, 20 clusters

Latitude

Longitude

Figure: Tessellation of F440 using k-means, k = 20 (colors are for
illustration only, no further meaning here)



Spatial vs. Non-Spatial Regression — Results: 1st Dataset
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Figure: Results F440, models vs. spatial/non-spatial vs. folds/clusters



Spatial vs. Non-Spatial Regression — Results: 2nd Dataset
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Figure: Results F611, models vs. spatial/non-spatial vs. folds/clusters



Summary

» precision agriculture as a data-driven approach
» spatial, geo-referenced data records in large amounts
» yield prediction solved as spatial cross-validation (regression)

» important difference between spatial and non-spatial data
treatment = use models which are fit for spatial tasks



Time for ...

Questions?

> contact: georg.russ@ovgu.de

» slides, R scripts and further info at
http://research.georgruss.de



