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Precision Agriculture

◮ GPS technology used in site-specific, sensor-based crop
management

◮ combination of agriculture and information technology

◮ data-driven approach to agriculture

◮ lots of data analysis tasks



Data Details – Example Field

Figure: F440 field, depicted on satellite imagery, source: Google Earth



Data Details – Example Sensor

Figure: Yara N-Sensor for vegetation index data collection, source:
Agricon GmbH



Data Details – Features

◮ collect a number of geo-coded, high-resolution features such
as:

◮ N1, N2, N3: nitrogen fertilizer application rates
◮ REIP32, REIP49: vegetation index (red edge inflection point)
◮ Yield: winter wheat yield in this year
◮ EC25: electrical conductivity of soil, represents information

about soil humidity, mineral content, pH value (et al)

◮ two fields available, 5000/6500 data records in
10 × 10m-resolution



Data Details – Temporal Aspects
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Figure: growing stages of cereals, source: adapted from BBCH



Data Details – Questions

◮ Can the current year’s yield be predicted from the available
features?

◮ → Spatial Regression

◮ Which of the features are important for the above yield
prediction?

◮ → Spatial Variable Importance



(Spatial) Regression – Basics

◮ multivariate regression: usually a cross-validation setup

◮ divide data into training and test sets
◮ train regression model on training set
◮ report error on independent (!) test set

◮ linear model (usually as a baseline and with linear
dependencies in data)

◮ support vector regression (support vector machine)

◮ random forest, bagging, regression tree (tree-based models)



(Spatial) Regression – Issue

Are (spatial) data records independent of each other?
(Do we have spatial autocorrelation?)
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Figure: F440, EC25/REIP32 predictor



Spatial Regression – Idea

◮ for spatial data: develop spatial cross-validation approach:
◮ don’t sample test and training sets randomly
◮ instead: sample using spatial relationships between records

◮ idea: subdivide the field into contiguous zones
◮ use k-means on the data records’ coordinates
◮ select training and test sets from this set of zones
◮ continue with the (now spatial) standard cross-validation

approach



Spatial Regression – Figure

F440, 20 clusters

Longitude

La
tit

ud
e

[0.49,0.9569]

Figure: Tessellation of F440 using k-means, k = 20



Spatial Variable Importance – Principle

◮ new data are collected: decide whether they’re useful for yield
prediction

◮ traditionally: feature selection (wrapper/filter approach)

◮ but: interdependencies among the variables

◮ novel variable importance approach:
◮ choose one variable and permute its values in the test set
◮ measure the increase in prediction error on the test set
◮ low/high increase: low/high importance (depending on data

and model)



Spatial Variable Importance – Results
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Figure: F440, RMSE of models



Spatial Variable Importance – Results
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Figure: F440, RMSE increase of models after permuting one variable



Spatial Variable Importance – Results
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Figure: F611, RMSE of models



Spatial Variable Importance – Results
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Figure: F611, RMSE increase of models after permuting one variable



Spatial Variable Importance – Conclusions

◮ REIP49 most important for yield prediction
◮ obvious, since it shows the biomass amount close to harvest

◮ F440: REIP32 close second

◮ F611: likely linear relationships in data (lm best)

◮ issues with different numbers of levels for variables occur (4
levels for N1, 45/50 for N2/N3, 367/397 for REIP32/49)

◮ difference in modeling (linear vs. tree-based vs. support vector
regression) can be seen



Summary

◮ precision agriculture as a data-driven approach

◮ spatial, geo-coded data in large amounts

◮ yield prediction solved as spatial cross-validation (regression)

◮ novel approach to assessing spatial variable importance



Time for . . .

Questions?

◮ contact: georg.russ@ieee.org

◮ slides, R scripts and further info at
http://research.georgruss.de


