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About me

◮ German computer scientist

◮ with interest in (spatial) data mining

◮ currently using mostly R for spatial data mining

◮ most of this talk is about what’s going to be my PhD thesis

◮ my research blog: http://research.georgruss.de/

◮ my “Data Mining in Agriculture” workshop in 2010:
http://dma2010.de/
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Why I’m here

◮ German-Australian cooperation (DAAD/Go8)
◮ two-year grant covering travel cost
◮ cooperation between Universität Magdeburg (Prof Rudolf

Kruse) and University of Melbourne (Prof Saman Halgamuge)
◮ project about renewable energy distribution and optimization

◮ Invitation by Warwick Graco to talk about

“Data Mining in Agriculture”
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Data Mining in Agriculture
basic idea

small−scale precision treatmentuniform treatment

field

Figure: Precision Agriculture = data-driven approach to agriculture

Georg Ruß, georg.russ@ieee.org Data Mining in Agriculture



Introduction / Motivation
Data Details

Example Task: Yield Prediction
Research Questions

Summary

Precision Agriculture

some more ideas

◮ precision agriculture

◮ cheap data collection
◮ GPS-based technology
◮ divide field into small-scale parts
◮ treat small parts independently instead of uniformly

◮ lots of data (sensors, imagery)

◮ use data mining to
◮ improve efficiency
◮ improve yield
◮ identify useful sensors
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N Fertilizer and Yield
Vegetation and Electric Conductivity

Spatial vs. Non-Spatial Data

◮ First law of geography: Everything is related to everything
else, but near things are more related than distant things. [7]

◮ agriculture data are spatial data
◮ spatial autocorrelation exists (Moran’s I, semivariograms)
◮ data records are therefore not independent
◮ natural neighborhood exists

◮ On the contrary:
◮ classical data mining models often do not handle spatial data
◮ data records are considered independent
◮ overfitting and overlearning occur
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N Fertilizer and Yield
Vegetation and Electric Conductivity

Origin of Data

◮ invasive vs. non-invasive

◮ high-resolution vs. low-resolution

◮ cheap vs. expensive

Remote Sensing aerial images, satellite images, NDVI, OSAVI,
VARI, REIP, BIOMASS; non-invasive, cheap,
high-resolution

Soil Sampling ECa, soil survey, OM, TN, AN, AP, AK, CEC, pH,
water; mostly invasive, expensive, high resolution =
expensive

Yield Mapping non-invasive, cheap, high to medium resolution

Topography often derived from GPS, elevation, slope, and
derivatives; non-invasive, cheap, high-resolution
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N Fertilizer and Yield
Vegetation and Electric Conductivity

N Fertilizer and Yield

◮ Nitrogen fertilizer
◮ easy to measure when manuring
◮ three time points into the growing season when nitrogen

fertilizer is applied
◮ three attributes: N1, N2, N3

◮ Yield 2007/2008
◮ measure yield when harvesting
◮ data from 2007 (previous year) and 2008 (current year)
◮ two attributes: Yield07, Yield08
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N Fertilizer and Yield
Vegetation and Electric Conductivity

Vegetation Measuring and Electric Conductivity

◮ Red Edge Inflection Point
◮ second derivative value along the spectrum’s red edge region
◮ aerial photography or tractor-mounted sensor
◮ larger value means more vegetation
◮ measured (chronologically) before N2 and N3

◮ two attributes: REIP32, REIP49

◮ Electromagnetic Conductivity
◮ measure apparent conductivity of soil down to 1.5m
◮ uses commercial sensors
◮ one attribute: ECa
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N Fertilizer and Yield
Vegetation and Electric Conductivity

Spatial Variable Plots F440 EC25
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Figure: Apparent Electrical Conductivity for F440 field
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N Fertilizer and Yield
Vegetation and Electric Conductivity

Spatial Variable Plots F440 N1
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Figure: Nitrogen Fertilizer (first dressing) for F440 field
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Example: Yield Prediction

YIE
LD

EC
a

YIE
LD

N 2 N 3. . . . . .

time

N 1

one growing season

REI
P 32

REI
P 49

◮ try to predict current year’s yield from fertilizer and soil status
data (and maybe past year’s yield?)

◮ classical regression problem?
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Example: Yield Prediction

non-spatial case:

◮ standard cross-validation learning approach:
◮ divide data into learning, validation and testing subsets
◮ train model on learning subset
◮ use validation subset to see when overfitting occurs (stop

learning)
◮ report error of model on testing subset
◮ models tested: neural networks, support vector regression,

regression tree, bagging etc.

◮ due to spatial autocorrelation very similar data records exist in
the training, validation and testing subsets

◮ violation of the statistical independence assumption

◮ → use spatial cross-validation

Georg Ruß, georg.russ@ieee.org Data Mining in Agriculture
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Example: Yield Prediction

spatial case:

◮ extend standard approach to spatial data

◮ divide data into spatial subsets (contiguous parts of the field)
◮ train standard regression model on learning subset
◮ use validation subset to stop training
◮ report error of model on testing subset
◮ spatial subset generation: via k-means (simple approach)
◮ regression models: as before

◮ more statistically valid way of yield prediction

◮ generate map from prediction errors
◮ find extraordinary parts in the field
◮ uncover hidden relationships in the data
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Spatial Prediction Plot F440, 50 clusters, svm.rmse
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Figure: Spatial Cross-Validation Approach, 50 Clusters, SVR
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Research Questions

◮ How well can the current year’s yield be predicted? (solved)

◮ Are there any subparts of the field which differ considerably
from the rest? Can we uncover hidden relationships from a
data mining perspective? (current work)

◮ How useful are the additional sensor data that were
introduced? (current work)

◮ ECa, REIP32, REIP49 et al.
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Literature

◮ Classical data-driven approach in agriculture: delineation into
management zones

◮ classic: yield mapping
◮ often: expert knowledge
◮ recently: fuzzy clustering on non-spatial data, PCA

◮ Drawbacks
◮ no dynamics – zones are static throughout season
◮ incontiguity of zones – no consideration of spatial relationships
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Literature

Figure: taken from [2], showing different field zones based on different
measurements of soil apparent electrical conductivity (ECa)
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Literature

(a) Principal Compo-
nents

(b) Resulting Zones

Figure: taken from [8], PCA is run on whole data set and management
zones are generated from the first principal components
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Literature

Figure: taken from [1], Management Zone Analyst Software, grid-based
clustering based on different subsets of available data
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Current Research

◮ Improve the existing approach of management zone
delineation:

◮ Use spatial data.
◮ Find contiguous subparts.
◮ Adapt management zones throughout the season.

◮ Approach (split-and-merge):
◮ Cluster the field (spatially) using k-means into an appropriate

number of zones.
◮ Merge neighboring zones according to some non-spatial

criterion (similarity, distance, etc.).
◮ Repeat this process in-season with available in-season

vegetation data (REIP32, REIP49).
◮ Investigate changes in zones.
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Split into Spatial Clusters (k-means) F440, 50 clusters
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Figure: split of F440 field into 50 spatial clusters using k-means on the
data points’ coordinates
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Interestingness of Subfields
Merging Clusters

Figure: suggested idea: merging the previous clusters into a fixed number
of management zones
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Usefulness of Particular Data Attributes
Open Question

◮ Question:
◮ How useful is a particular sensor (attribute)?
◮ Is a new attribute related to existing ones?
◮ Does a new attribute contribute much in terms of information

content?

◮ Practical issues:
◮ Question arises when developing new sensors
◮ New sensors are evaluated in-season
◮ (current research and part of my PhD)
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Interestingness of Subfields
Usefulness of Particular Data Attributes

Usefulness of Sensor Data
Open Question

◮ Ideas towards this issue:

◮ Create a spatial (yield) prediction model and evaluate how
much this is improved by adding new data attributes?

◮ Apply principal components analysis and check the
components?

◮ Check an attribute’s importance by permutating its values and
comparing models before and after the permutation?

◮ Evaluate standard feature selection approaches for non-spatial
data and adapt those?
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Summary

◮ There’s a difference between non-spatial and spatial data.

◮ Agriculture will become ever more data-driven.

◮ Standard data mining techniques can not be copied
one-to-one to spatial data, but may be adapted:

◮ Clustering
◮ Regression
◮ Feature Selection
◮ Principal Components Analysis
◮ etc.

◮ overall: successful application of data mining ideas in
agriculture
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Finally . . .

Questions & Answers

◮ my research blog: http://research.georgruss.de/

◮ my “Data Mining in Agriculture” workshop in 2010:
http://dma2010.de/
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