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Introducing Myself

◮ Computer Science Degree (Diplom) in 2006
◮ Work on Data Mining
◮ Minor: Chemistry and Spectroscopy (MS, NMR)

◮ PhD work on Spatial Data Mining in Precision Agriculture
◮ Interdisciplinary: computer science, geostatistics, precision agriculture

◮ Thesis submitted, PhD Defense: February 23rd

◮ PostDoc @UFZ?
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Dissecting the (PhD Thesis) Title

Spatial
︸ ︷︷ ︸

3

Data Mining
︸ ︷︷ ︸

2

in Precision Agriculture
︸ ︷︷ ︸

1

◮ 1 – Precision Agriculture
◮ nowadays’ technology applied to agriculture
◮ small-scale, site-specific, data-based management
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◮ 1 – Precision Agriculture
◮ nowadays’ technology applied to agriculture
◮ small-scale, site-specific, data-based management

◮ 2 – Data Mining
◮ algorithms and ideas to mine data:
◮ find novel, interesting and useful information in data [FPSS96]

◮ 3 – Spatial (Data)
◮ result from most operations in environmental sciences
◮ must consider spatial nature of data during data mining
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Example Site F440

Figure: F440 near Köthen, Source: Google Earth w/ Overlay
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Types of Data

◮ Yield and fertilizer

◮ Remote sensing (REIP32, REIP49, aerial/satellite imagery, . . . )

◮ Geophysical data (apparent electrical conductivity EC25, . . . )

◮ Soil sampling (pH, K, P, Mg, . . . )

◮ Digital elevation models derivatives (slope, curvature, aspect, wetness
index, . . . )

◮ → High resolution spatial data sets

◮ → Use data mining on those sets for, e.g., optimization tasks
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Example Site F440 (cont.)
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(h) Curvature

Figure: Yield and a few predictors (F440)
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Task: Yield Prediction w/ Variable Importance
Yield Prediction = Regression

◮ Task: Predicting yield from other variables (ex-post)
◮ based on an existing PhD thesis from 2006 [Wei06]
◮ consider yield prediction as a (non-linear) regression task
◮ issues with non-spatial models on spatial data (cp. [RB10a])
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◮ Task: Predicting yield from other variables (ex-post)
◮ based on an existing PhD thesis from 2006 [Wei06]
◮ consider yield prediction as a (non-linear) regression task
◮ issues with non-spatial models on spatial data (cp. [RB10a])

◮ Models
◮ linear (lm), generalized additive (gam)
◮ regression tree (rt), bagging (bag)
◮ neural network (net)
◮ support vector regression (svr)
◮ k-nearest neighbor (kknn)
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Task: Yield Prediction w/ Variable Importance
Regression Modeling, Process Flow

sampling

test data trained model(s)

prediction

error (RMSE)

spatial data

repeat

training data model fitting

Figure: Generic cross-validation approach
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Task: Yield Prediction w/ Variable Importance
Non-Spatial Sampling on Spatial Data

◮ Problem: spatial autocorrelation

◮ geographically adjacent data
records likely to end up in
training and test sets

◮ violates the independency
assumption of cross-validation

◮ leads to systematic error
underestimation
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Figure: 20 spatial clusters

◮ → spatial sampling using spatial clustering:
◮ k-means clustering
◮ e.g., randomly choose 90/10% of clusters for training/test
◮ more clusters → convergence towards non-spatial sampling

(cp. [RB10b])
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Task: Yield Prediction w/ Variable Importance
Spatial Regression Modeling, Process Flow

spatial
sampling
spatial

test data trained model(s)

prediction

error (RMSE)

repeat

spatial data training data model fitting

Figure: Generic spatial cross-validation approach
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Task: Yield Prediction w/ Variable Importance
Variable Importance

◮ Question
◮ What is the influence of a single variable on the model performance?
◮ = Does a new sensor really contribute new information?
◮ = Should we consider additional data sources?
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Variable Importance

◮ Question
◮ What is the influence of a single variable on the model performance?
◮ = Does a new sensor really contribute new information?
◮ = Should we consider additional data sources?

◮ Idea: Try permuting this variable in the test set!

◮ if the RMSE increases, the variable is probably important
◮ allows to assess the importance in the presence of other variables
◮ allows to determine relationships between variables
◮ works independently of the regression model used

◮ Side note: repeat steps below sufficiently often (statistics)
◮ random spatial sampling
◮ model fitting
◮ test set permutation
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Task: Yield Prediction w/ Variable Importance
Variable Importance, Process Flow

permutation

variable importance

spatial data training data

trained model(s)

prediction

test data

error (RMSE)

repeat

spatial
sampling

model fitting

Figure: Spatial Variable Importance Approach
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Task: Yield Prediction w/ Variable Importance
Results

◮ variable importance results:

◮ vegetation indicators REIP32, REIP49 most important throughout
models and sites

◮ apparent electrical soil conductivity quite important (in conjunction
with others)

◮ digital elevation model variables quite important (wetness, curvature,
slope)

◮ further results vary between sites

◮ further relevant results:

◮ comparison between different fertilization strategies made possible
◮ comparison between models (winner: bagging/svr, loser: net)

◮ details in dissertation [Ruß12]

◮ in preparation: article for Remote Sensing of Environment
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My Contribution to Data Integration/Inversion

◮ I’m not a geophysicist . . .
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◮ I’m not a geophysicist . . .
◮ . . . but we’re having similar modeling and optimization problems in

computer science!

◮ Specialties
◮ preprocessing of spatial environmental data
◮ computations on spatial environmental data (preferably in R)
◮ parameter optimization of models (evolutionary, gradient descent,

simulated annealing, PSO, . . . )
◮ exploitation of spatial heterogeneity
◮ clustering, data and sensor fusion (≈ integration)

◮ Interests
◮ work with further (geophysical?) data sets
◮ work in conjunction with further disciplines
◮ provide computer science and data mining expertise
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Possible Research Profile

Environmental Data Mining

as the task of finding interesting, novel and potentially useful knowledge in
spatial and temporal multi-layered data sets from environmental sciences.

(definition adapted from [FPSS96])
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