Exploratory Hierarchical Clustering for Management Zone Delineation in Precision Agriculture

Georg Ruß, Rudolf Kruse

 $Otto-von-Guericke-Universit\"{a}t\ Magdeburg,\ Germany \\ \{russ,kruse\}@iws.cs.uni-magdeburg.de$

ICDM, Sep 2nd, 2011

Precision Agriculture

- ▶ GPS technology used in site-specific, sensor-based crop management
- combination of agriculture and information technology
- data-driven approach to agriculture
- ▶ lots of data analysis tasks

Data Details - Example Field

Figure: F550 field, depicted on satellite imagery, source: Google Earth

Data Details – Features

- collect a number of geo-coded, high-resolution features such as:
 - ▶ N1, N2, N3: nitrogen fertilizer application rates in 2004
 - REIP32, REIP49: vegetation index (red edge inflection point) in 2004
 - Yield: corn yield 2003, winter wheat yield in 2004 and 2007
 - EC25: electrical conductivity of soil in 2004
 - ▶ pH, P, K, Mg: soil sampling in 2007
- ightharpoonup one field available, 1080 records in 25 imes 25 m-resolution on a hexagonal grid

Data Details - Temporal Aspects

Figure: timeline of data acquisition

Spatial Autocorrelation

Are (spatial) data records independent of each other? (Do we have spatial autocorrelation?)

Figure: F550, EC25 and Magnesium readings

Management Zone Delineation

- ▶ A common task in agriculture:
 - subdivide the field into smaller zones
 - zones are rather homogeneous
 - zones are spatially mostly contiguous
 - similarity between zones is low
- ▶ → spatial clustering

Literature Approaches

- mostly non-spatial algorithms are used
 - no spatial contiguity
 - small islands, outliers, etc.
 - black-box models
 - fuzzy c-Means, k-Means, etc.
- spatial contiguity is not always required, but desirable
- spatial autocorrelation is usually neglected rather than exploited

Spatial Contiguity Constraint

- spatial clustering = clustering with a spatial contiguity constraint
- ➤ → constrained clustering
- Keep it simple and understandable:
 - hierarchical clustering
 - agglomerative clustering
- ► Idea:
 - 1. split field into small zones which are homogeneous
 - iteratively merge these zones obeying similarity and spatial constraint

Spatial Tessellation

- k-Means clustering on the data points' coordinates
 - due to spatial autocorrelation, adjacent points are likely to be similar
 - this ensures homogeneity of these small zones
 - ▶ *k* is user-controllable and easy to understand
 - ▶ homogeneous field: smaller *k*
 - heterogeneous field: higher k

Spatial Tessellation

Figure: Tessellation of F550 using k-means, k = 80 (grey shades are for illustration only, no further meaning here)

Hierarchical Agglomerative Constrained Clustering

- principle: merge only adjacent objects/clusters, if they are similar enough
 - this ensures spatial contiguity
 - ▶ → spatial constraint, non-adjacent clusters cannot link
- once non-adjacent clusters become much more similar than adjacent ones, they may be merged
 - ▶ introduce a user-controllable contiguity factor cf
 - $cf \ge 2$: high contiguity
 - $cf \in [1,2]$: low contiguity
 - $cf \leq 1$: no contiguity

HACC – 1D example

Figure: F550, EC25 clustering

HACC – 4D example

Figure: F550, four attributes

HACC – 4D example (cont.)

Figure: F550, management zones

- actually, 3 zones (when comparing attribute values)
 - ▶ low pH, low P, low Mg, low K (largest zone)
 - high pH, high P, high Mg, high K (border zones)
 - high pH, high P, low Mg, high K (middle, from left)

Summary

- precision agriculture as a data-driven approach
- spatial, geo-referenced data records in large amounts
- management zone delineation solved as a spatial clustering approach
- ▶ important difference between spatial and non-spatial data treatment ⇒ use models which are fit for spatial tasks

Time for . . .

Questions?

Workshop Data Mining in Agriculture on Saturday (after ICDM)

- contact: russ@dma-workshop.de
- slides, R scripts and further info at http://research.georgruss.de